-
数学
-
分からない問題はここに書いてね448
- コメントを投稿する
-
削除依頼を出しました
-
しつもんいいすか
-
いいよ。
でも完全性定理と数理論理のモデル理論はダメだからね。 -
なぜですか?
-
面白くないからに決まってるジャン
-
画像貼るんでちとまってください
-
おう、
待つよ! -
https://i.imgur.com/kgByavn.jpg
https://i.imgur.com/81mXtaZ.jpg
1枚目の問題の解答が2枚目なのですが、途中に出てくるmaxは正しくはminではないでしょうか -
その通り
-
∫1→∞ 1/x^2 dx
について
1→∞[-2/x]
1→∞[0+2]=2
とするんですが違和感がありすぎます
x=1のとき高さが2であるとしかこれは言っていなくて
積分ならば当然面積なので
?これね直角三角形の面積
高さが2だから面積が2なんて数学はなくて
当然(底辺×高さ)/2ですよね
しかるに
∫1→∞ 1/x^2 dx
は
底辺∞高さ2の直角三角形だから
(∞×2)/2=∞
とこうなるんじゃないのん?
おらが間違えたんならどう間違ったか解説してくれんかのう -
そもそも1だし
-
高さ1底辺∞の直角三角形=高さ1底辺∞の帯状領域(直方体)
だし
積分で面積を求めた領域≒(x=1付近を除けば)点(0,1)から延びる半直線
だから
違和感持つ方が無理だろ
> 1→∞[0+2]=2
左辺の変な記号が一つ上の行と同じ意味なら右辺は0だなw -
そかそか
∫1→∞ 1/x^2 dx
について
1→∞[-1/x]
1→∞[0+1]=1
とするんですが違和感がありすぎます
x=1のとき高さが1であるとしかこれは言っていなくて
積分ならば当然面積なので
?これね直角三角形の面積
高さが1だから面積が1なんて数学はなくて
当然(底辺×高さ)/2ですよね
しかるに
∫1→∞ 1/x^2 dx
は
底辺∞-1高さ1の直角三角形だから
((∞-1)×1)/2=∞
とこうなるんじゃないのん?
おらが間違えたんならどう間違ったか解説してくれんかのう
∫1→∞ 1/x^2 dx
の面積って1なの?∞なの?どっち? -
dx=1として計算してみるよ
1→∞[-1/x]
x=1 y=1
x=2 y=0.5
x=3 y=0.33
x=4 y=0.25
ここまでの面積
1+0.5+0.33+0.25=2.08
∫1→∞ 1/x^2 dx
の面積は1にはどうしても思えなくて∞だろ -
ああ、ちゃうな
dx=1として計算してみるよ
y=1/x^2
x=1 y=1
x=2 y=0.25
x=3 y=0.11
x=4 y=0.0625
ここまでの面積
|1+0.25+0.11+0.0625|=1.4225
∫1→∞ 1/x^2 dx
の面積は1にはどうしても思えなくて∞だろ -
だから無限遠の重力ポテンシャルをゼロにしたなんちゃら宇宙速度
ってそもそも面積∞だから使い物にならんよねえ -
さあ、どうやって誤魔化しますかぁ?
-
三角形の合同条件3つが合同条件になる証明ができない高校生です笑笑
検索しても出なかったので詳しい方お願いできないでしょうか。
メモします -
それは例えばヒルベルトの公理系からスタートするのかR^2の座標とっていいのかでも話がだいぶ違うな。
後者でいいん? -
>>16
> x=1 y=1
> x=2 y=0.25
> x=3 y=0.11
> x=4 y=0.0625
>
> ここまでの面積
> |1+0.25+0.11+0.0625|=1.4225
お前が足してるのは左上の点が1/x^2のグラフ上にある長方形の面積だから
1/x^2のグラフから大いにはみ出てる(積分を上から評価することはできる
右上の点がグラフ上にあるようにするなら最初の1x1の長方形は範囲外だから足したらダメ
そうするとお前の示したのは 0.4225 < 求める積分 < 1.4225 になるということだけ -
そもそも一般に
∫1→∞ 1/r^2 dr = 1
と
∫0→1 1/r^2 dr は相似なのに = ∞
↑
なんで1と∞を混在して採用しているわけさ?
ご都合主義なん?
相似なんだから1か∞に統一すべきじゃないのか? -
だから、結局これは
∫0→∞ 1/r^2 dr = 3 or ∞
3なの?∞なの? -
∫1→∞ 1/x^2 dx = 1
とする
∫0→1 1/x^2 dx = ∞
だけど
∫1→∞ 1/x^2 dx = 1
と縦横入れ替わっただけで相似だから
∫0→1 1/x^2 dx = 1
とする
それに1×1=1
ゆえに
∫0→∞ 1/x^2 dx = 1+1+1 = 3
こういうことにはならんのかえ? -
ちょっと違うな
∫1→∞ 1/x^2 dx = 1
とする
∫0→1 1/x^2 dx = ∞
だけど
∫1→∞ 1/x^2 dx = 1
と縦横入れ替わっただけで相似だから 1×1=1の部分を足して
∫0→1 1/x^2 dx = 2
とする
ゆえに
∫0→∞ 1/x^2 dx = 1+2 = 3
こういうことにはならんのかえ? -
そもそも1/x^2のグラフはy軸に対して対称であって縦横が相似じゃないぞ
-
老子とプリンストン大学数学科の教授の中で断然トップの人はどっちの方が頭が良いですか?
-
分子が1、分母がn桁の正整数である有理数全体からなる集合をS_nとする。
S_nの要素のうち、循環節の長さを最小とするものを1つ取り、その長さをm[n]とする。同様に循環節の長さを最大とするものについてその長さをM[n]とする。
(1)m[n]を求めよ。
(2)以下を示せ。
(a) lim[n→∞] m[n]/M[n] = 0
(b) M[n]≦M[n+1]
(c) M[n]<10^n -
(10,a) = 1のとき
1/a の循環節の長さ = 10の Z/aZの乗法群での位数。
とくにそれはaより小さいからa<10^nのとき
1/a の循環節の長さ < 10^n。
またa|bのとき
1/a の循環節の長さ≦1/b の循環節の長さ。
pを素数としてa = p^e、vをp進付値mを10の Z/pZの乗法群での位数とするとき
v(10^(mn) −1) = v(10^m−1)+v(n)
により10のZ/aZの乗法群での位数はmp^(e-v(10^m-1))。
特にp = 7のとき10のZ/(p^e)Zの乗法群での位数は6・7^(e-1)。
10^(n-1)<7^e<10^n であるn,eをとるとき1/7^eの循環節の長さは
6・7^(e-1)であり特に
M[n] ≧ 6・7^(e-1) > 6/7 10^(n-1)。 -
>>26
y=1/x^2
∫0→1 1/x^2 dx = ∞
y=1/x^2
yとx入れ替えて
x=1/y^2
y=1/√x
∫1→∞ 1/√x dx = 1
1→∞[2√x]=1→∞[∞-1]=∞
あれ?なんでこっちは収束しないん? -
>>26
y=1/x^2
∫0→1 1/x^2 dx = ∞
y=1/x^2
yとx入れ替えて
x=1/y^2
y=1/√x
∫1→∞ 1/√x dx = 1
1→∞[2√x]=1→∞[∞-2]=∞
あれ?なんでこっちは収束しないん? -
これの18問ってどうやって解けば良いの?
http://www.ms.u-toky...kyoumu/b20170524.pdf -
前スレの992
点T(1,t)で円2つが交わるとすれば線分OTの垂直二等分線の第一象限で切り取られた部分が2円の中心間距離l。
l=(t^2+1)^(3/2)/2tはすぐ出てくるのであとは微分してください
おわり -
前スレ993
2∫0→t (a^2-2(a-√(a^2-t^2))^2)dtで出てくるやろ -
宿題の答えを聞いているような感じ
-
>>32
(1)が5になった。自信なし。
(2)(1)のAF(X) = Qを満たすXをX0とすると
EG(X0)⊂X0⊂AF(X0) = Q
だから
X0∈{ AF(EG(X0)) = Q}
により
min {|X| ; AF(EG(X0)) = Q} ≦ 5。 -
>>38
2円の中心は、線分OPの垂直二等分線とx軸,y軸の交点。
((pp+1)/2,0) (0,(pp+1)/(2p))
その距離の2乗は
L(p)^2 = (pp+1)^3 /(2p)^2 = (27/16) + (1/4)(pp+4)(pp-1/2)^2 ≧ 27/16,
L(p) ≧ L(1/√2) = (3√3)/4, -
二円の直径(半径)は、それぞれ直角三角形の相似で簡単にわかる.
M = 4L^2 = (pp + 1)^2 + ( p + 1/p )^2 = q^2 + 3q + 1/q + 3 (q = pp と置いた)
M'= 2q + 3 - 1/(qq) = (2q^3 + 3qq - 1) = (2q - 1)(q+1)^2 /(qq)
増減表より M は q=1/2 にてミニマム値をとる事がわかる. (条件 q>0)
よって L_min = (1/2) * √(1/4 + 3/2 + 2 + 3) = 1/4 √27 = (3√3)/4. -
前スレ>>897
サイコロを繰り返し投げ, 出た目が直前の回に出た目の約数でなくなったら終了する。
n回目にサイコロを投げ, かつその目が1である確率p[n]を求め, n回目に終了する確率をp[n]とp[n+1]を用いて表せ。
n回目が1になるのは, 次のような経過の場合である:
6→1, 6→3→1, 6→2→1, 5→1, 4→1, 4→2→1, 3→1, 2→1, 1
∴n回目が1である確率P[n]は,
P[n]={1+5・C(n-1, 1)・3・C(n-1, 2)}/6^n
=(3n²+n-2)/(2・6^n)
を得て,
n-1回目に終了していない確率は, 6・P[n]なので
, n回で終了する確率は,
6(P[n]-P[n+1])=(15n²-n-14)/(2・6^n)
を得る。
n回目が1である確率から, 直ちにn回で終了する確率が求められるところが面白いと感じますね。 -
ある牧場では100頭の羊を放すと15日間で牧草がなくなり、
120頭の羊を放すと10日間で牧草が食べつくされました
この牧場で80頭の羊を10日間放した後、
さらに何頭xかの羊を加えたところ、
加えてから4日間で牧草は食べつくされました
後から加えた羊は何頭ですか
ただし、牧草は1日に一定量a生え、また、
どの羊も1日で同じ量uの牧草を食べるものとします
(ヒント:最初からある草の量をbとおく) -
ニュートンのパチモンか
-
100
-
問題文見間違えた >46はなしで
-
80
-
>>34
〔前スレ.993〕
aを正の定数とする。
xyz空間において,円柱 yy + zz ≦ aa と角柱 |x| + |z|≦ a との共通部分をKとする。
(1) Kの体積を求めよ。
(2) Kの表面積を求めよ。 -
>>49
(1)
z=一定の平面で切ると、
|x| ≦ a - |z|,
|y| ≦ √(aa-zz),
の長方形。
V = 8∫[0,a] (a-z)√(aa-zz) dz = (2π - 8/3)a^3 = 3.61651864a^3 -
a,b,cは素数で、2≦a≦b≦cかつa+b>cを満たす。
AB=c,BC=a,CA=bである△ABCの面積をS(a,b,c)とする。
(1)有理数pと自然数nを用い、S(a,b,c)=p√nと表したとき、n=1とならないことを示せ。
(2)次の命題の真偽を述べよ。
「どのような素数qについても、a,b,cをうまく選ぶことで、n=qとなるようにできる」 -
わからないんですね
-
>>52
固有値 (固有ベクトル)^t
----------------------------------
1+2a (1/√3,1/√3,1/√3)
1-a (1/√6,1/√6,-2/√6)
1-a (1/√2,-1/√2,0)
1-a は重根なので、固有ベクトルの取り方がいくつもあります。
a=0 つまり A=E のときは任意のベクトルが固有ベクトルです。 -
>>50 (補足)
∫(a-z)√(aa-zz) dz
= ∫[(1/2)a^3 -aaz -azz +z^3]/√(aa-zz) dz + (a^3)/2・∫1/√(aa-zz) dz
= (1/6) (2aa+3az-2zz) √(aa-zz) + (a^3)/2・arcsin(z/a) +c, -
「無」に勝るものは何もありませんか?
-
>>44
増える草の量+最初の草の量-食べる草の量=0
として式を作る。
15a+b-100*15u=0
10a+b-120*10u=0
14a+b-(80*14+x*4)u=0
これを解くとx=80 -
>>38
勝手にtで置いてたけどpだったかw -
面白スレの795で、宝は2つのまま、縦と横のマス数をそれぞれn、n+1と置いたとき、横に沿って探した方が相手より先に見つけやすいことは3,4の場合でそうだったことから容易に想像出来るが、その証明は出来るだろうか?
-
縦nマス、横n+1マスのn(n+1)マスのうちランダムに選ばれた2マスにそれぞれ宝が眠っている。
縦1列を探し終えたらすぐ右の1列に移って宝を探していく方法をとるP君と、横1行を探し終えたらすぐ下の1行に移って宝を探していく方法をとるQ君が、同時に左上の地点から探索を開始した。
例えば、n=3の時はP君はAEIBFJCGKDHLの順で探す。Q君はABCDEFGHIJKの順で探すことになる。
ABCD
EFGH
I JK L
1つの地点を捜索するのにかかる時間は同じで、相手が1度探し終えた地点を重複して調べることも当然ある。
相手より先に宝を見つけた方を勝者とする。同時の場合は引き分けとする。
どちらの方が有利になるだろうか? -
え?3x4なら横からやったほうがいいの?
直観的には同じだけど… -
50の(2)ってどうすればいいの?
-
>>62
49のでした -
>>62
49のでした -
α,β,γ は α>0,β>0,γ>0,α+β+γ=π を満たすものとする.このとき, sinαsinβsinγ の最大値を求めよ.
最もエレガントな回答を教えてください。
ごちゃごちゃ一つ固定して微分すればすぐ解けますが
対称性から一発で解けたりしませんか? -
>>66
面積に直したら、3項の相加相乗の問題に帰着するから一瞬じゃないの? -
あんまり一瞬でもないな
適当すぎw -
>>66
よく知られてるのは log sin x の凸性使うやつだな。 -
無に勝てるものはありますか?
-
z/{((z-1)^2)((z-2)^3)}
の各特異点における留数を求めるのって
z=1 だったら
(z-1)^5をかけて4回も微分して極限をとるっていうことしないといけないのってめちゃくちゃ手間がかかると思うんですけど
そうする以外に簡単にもとまる方法ってないですか? -
>>66
f(α,β,γ) = sinαsinβsinγ と置く.
領域境界では f = 0 、領域内点では f > 0 .
境界が素直なので f の勾配ベクトルが平面 α + β + γ = π と直交する点を探せばよい.
つまり cosα sinβ sinγ = sinα cosβ sinγ = sinα sinβ cosγ より
tanα = tanβ = tanγ ∴ α = β = γ = π/3
f = (√(3)/2)^3 = (3/8)√3 を得る. -
>>71
z/{((z-1)^2)((z-2)^3)}
= {(z-1) + 1}/{((z-1)^2)((z-1 - 1)^3)} (以降 h = z-1 と置く)
= -(1/h + 1/h^2) * (1 + h + h^2 + ...)^3
= -(1/h + 1/h^2) * (1 + 3h + ...)
= -1/h^2 - 4/h - ...
1/h の係数だけ拾えばよい
(z-2 + 2)/{((z-2 + 1)^2)((z-2)^3)}
= (1/h^2 + 2/h^3) { 1 - h + h^2 + ... }^2
= (1/h^2 + 2/h^3) { 1 - 2h + 3h^2 +... }
以下略 -
こういうのをゴリ押しで解こうとするたび思うんだが、sinxをexp(ix)で表しても手間は減らないもの?
-
>>65
ありがとうございます -
>>60
コンピュータでシミュレーションしてみた。
n=3のときは (P1st::P君が先に見つける宝の埋没場所の組み合わせ数)
> t342=treasure(3,4,2)
P1st Q1st even
26 27 13
n=4のときは
> t452=treasure(4,5,2)
P1st Q1st even
84 83 23
常に横に探す方が有利ではないようだ。
Rでのコードはここ
http://tpcg.io/d6OYvn -
>>79
nを変化させてP,Qが先に見つける宝の配置を計算させてみた。
大きいほうが有利になる。
> t(sapply(1:15,treasure1))
P1st Q1st even
[1,] 0 0 1
[2,] 4 5 6
[3,] 26 27 13
[4,] 84 83 23
[5,] 203 197 35
[6,] 413 398 50
[7,] 751 722 67
[8,] 1259 1210 87
[9,] 1986 1910 109
[10,] 2986 2875 134
[11,] 4320 4165 161
[12,] 6054 5845 191
[13,] 8261 7987 223
[14,] 11019 10668 258
[15,] 14413 13972 295 -
2点(0,0,0),(2,0,1)を通る直線をl,2点(1,-2,0),(0,-4,-1)を通る直線をmとし、l,mをz軸のまわりに、1回転して得られる曲面をそれぞれα、βとする。
-
>>81
2平面z=0,z=5とαで囲まれた部分をA,2平面z=0,z=5とβで囲まれた部分をBとするとき、共通部分A∩Bの体積を求めよ -
>>82
詳しい解説お願いします。 -
約分
-
>>85約分すればあっていますか?
-
>>60>>61
Ωの部分集合を事象と言う
Ω自身は全事象と言う
Ω={A,B,C,D,E,F,G,H,I,J,K,L}となる
各 i (1≦i≦12) が根元事象である
最初に宝が出るという事象A={宝}で確率P(A)は
P(A)=1/12 となる
最初に探す方向を i
列が変わる時を j として
最初に宝が出るという事象Aと事象Bを考える.
A={(i,j)| i または j が宝}
B={(i,j)| i または j が宝}
Ω={(i,j)|1≦i≦n,1≦j≦n+1}となり
このn(n+1)通りの各要素が根元事象
縦方向に探査する場合
Ω={(i,j)|1≦i≦n,1≦j≦n+1}から
#A=n(n+1)−n(n−1)=2n
#Aは事象Aに含まれる要素の個数
横方向に探査する場合
Ω={(i,j)|1≦i≦n+1,1≦j≦n}から
#B=n(n+1)−n(n−1)=2n
最初に宝が出る確率は
∴P(A)=P(B)=2n/n(n+1) -
σをn次の置換とする。R^nからR^nへの写像で、(x_1,...,x_n)を(x_σ(1),...,x_σ(n))にうつすものは連続であることを示して下さい。
-
直観的に考えたら違う理由が思いつかないから書いたんだけど…
何故違うかもしれないと考えたのかわからないレベルで違う理由が思いつかない
ABCDEFGHIJK
AEIBFJCGKDHL
と並んでる状態で、A-Kのうち2個がランダムで当たり
最初の当たりが左に近いのはどっち?ってことじゃん
>>80では有意差が有るように見えるけど、何故なのかよくわからない -
>>87
読んだ人の時間を無駄遣いさせるような明らかな誤答は慎めよ。 -
>>90
別スレの解説をコピペ
なるほどねえ
確かにQの方が微妙に先に見つける場合が多いな
Pが先に見つけるのは以下の26通り
CE,DE,DI,EF,EG,EH,EI,EJ,EK,EL,FG,FH,FI,FJ,FK,FL,GI,GJ,HI,HJ,IJ,IK,IL,JK,JL,KL
Qが先に見つけるのは以下の27通り
BC,BD,BF,BG,BH,BI,BJ,BK,BL,CD,CF,CG,CH,CJ,CK,CL,DF,DG,DH,DJ,DK,DL,GH,GK,GL,HK,HL
同時に見つけるのは以下の13通り
AB,AC,AD,AE,AF,AG,AH,AI,AJ,AK,AL,BE,CI -
>>91
具体的な反例を伴わないのは詭弁ですよ -
>>93
既に>80で実証済 -
>>80
n=2
ABC
DEF
の場合
短軸方向探索Pが先に宝を発見する埋め方:4通り
> print(matrix(LETTERS[t232$P1st],nrow=2),quote=F)
[,1] [,2] [,3] [,4]
[1,] C D D E
[2,] D E F F
長軸方向探索Qが先に宝を発見する埋め方:5通り
> print(matrix(LETTERS[t232$Q1st],nrow=2),quote=F)
[,1] [,2] [,3] [,4] [,5]
[1,] B B B C C
[2,] C E F E F
同時に宝を発見する埋め方:6通り
> print(matrix(LETTERS[t232$even],nrow=2),quote=F)
[,1] [,2] [,3] [,4] [,5] [,6]
[1,] A A A A A B
[2,] B C D E F D -
なんか納得できない結果が出てきてて頭がぐるぐるううううう
-
そんなの当たり前じゃん(´・ω・`)
等確率にしかならないのに無理やり差異を
見つけようとしているもん -
>>96
>95の操作をn=20までやってみた。
> t(sapply(1:20,treasure1))
P1st Q1st even
[1,] 0 0 1
[2,] 4 5 6
[3,] 26 27 13
[4,] 84 83 23
[5,] 203 197 35
[6,] 413 398 50
[7,] 751 722 67
[8,] 1259 1210 87
[9,] 1986 1910 109
[10,] 2986 2875 134
[11,] 4320 4165 161
[12,] 6054 5845 191
[13,] 8261 7987 223
[14,] 11019 10668 258
[15,] 14413 13972 295
[16,] 18533 17988 335
[17,] 23476 22812 377
[18,] 29344 28545 422
[19,] 36246 35295 469
[20,] 44296 43175 519 -
シミュレーションしても>92の結果に合致。
> x=c(1,1,rep(0,10))
> PQ <- function(){
+ Q=sample(x)
+ z=matrix(Q,ncol=4,byrow=T)
+ P=as.vector(z)
+ c( even=which.max(P) == which.max(Q),
+ p1st=which.max(P) < which.max(Q),
+ q1st=which.max(P) > which.max(Q))
+
+ }
> k=1e6
> re=replicate(k,PQ())
> mean(re['even',]) ; 13/(26+27+13)
[1] 0.197025
[1] 0.1969697
> mean(re['p1st',]) ; 26/(26+27+13)
[1] 0.393803
[1] 0.3939394
> mean(re['q1st',]) ; 27/(26+27+13)
[1] 0.409172
[1] 0.4090909
↑今すぐ読める無料コミック大量配信中!↑