-
ビジネスnews+
-
【IT】データサイエンティスト職に求められる言語のトップに「Python」--「R」を上回る
-
UPLIFTで広告なしで体験しましょう!快適な閲覧ライフをお約束します!
「Python」と「R」はデータサイエンティスト職の求人で最も多く要求されるスキルに数えられている。ところが、こうしたプロフェッショナルの仕事で最も頻繁に使用されているプログラミング言語について調査した複数の報告書によると、実際は評価が分かれるという。Cloud Academyの米国時間12月27日付の報告書で明らかになった。
まず、TIOBE Programming Community Indexによれば、2018年の検索エンジンのリクエスト数でみたRの順位は下降気味だったという。だが、データプロフェッショナル1万6000人を対象に実施したKaggleの調査では、全体で最も人気の高いプログラミング言語はPythonであるものの、統計およびデータサイエンティストは他のどの職務よりも業務でRを使用している割合が高いことが分かった。データサイエンティストの87%はPythonを、71%はRを業務で使用していると回答していると、同報告書に記
以下ソース
https://japan.techre...article/35131060.htm - コメントを投稿する
-
データサイエンティストに求められるのは言語ではない
数字を読む能力なのに -
ピソン
-
Rは統計データを扱うのに特化した言語であって
システムを組むには不向きなだけだろ -
データをnumpyとかpandaとかに整形するのがめんどいんじゃ糞が
-
Python 遅いけど、、
使いやすいし、便利なライブラリも多い。 -
基本をC、ライブラリは都合のいいもの。今はたしかにPython。
Rは統計というかデータベース用だとおもう。 -
Rubyは流行ることなく終わったな
-
なぜ Rだと思う? 記者の取材不足?
-
最近は機械学習系のライブラリがみんなPythonだからな
イヤでも使うしかない -
いよいよボッキデータの真髄、といったところか
-
2chでも変なところで改行してると気になる
-
>>2
数字を読むのはAIの役目 -
その辺の言語は文法が少し違うだけで
どれも同じだよ -
>>11
この記事はデータサイエンティスト限定の話だし
もちろん他の用途では事情は変わってくるだろうね
機械学習いらんってことなら、別の言語でも全然構わないだろう
ちなみにPythonでプログラム書いてWebサイトを立ち上げようとすると
素のApacheですぐに動かないから微妙に面倒くさい
Djangoとかのフレームワークを使う手もあるけど、
それぞれにクセがあって多少手間がかかる
最後は何を作りたいかで決まるでしょう -
numbaじゃなくてpsyco復活してほしい
cythonがまぁまぁ使いやすい -
Rを使うのは昔の文系統計屋だけ
データサイエンティストはRなんて使わないわな -
assembler, bash, basic, c, cobol, java, perl, php, python, PL/M
人生最後の言語はrustだと思いたい -
データ解析といえばSASじゃないの?時代は変わったな
-
データ分析基盤を作るのは他に丸投げ?
-
でもモジュール作る人はc/c++じゃないの?
データサイエンティストと言う人らはフロントだけを作るの? -
>>1
Julia は? -
Rはデータ処理しやすいから好き
書き方も好き -
これはおかしい
Pythonが言語として優れてるわけでなく、グーグルとか多数企業が
数値計算、AI関連のモジュールもあとから追加したからだろ。
Javascriptでもよかった -
なぜ機械学習にPythonが選ばれるのか
Google AppEngineの開始当初(2008年4月)にPythonをサポートしていた際には、なんでPythonなんだろうと軽く調べ、教育用として海外では普及しているという認識だった。
2012年〜2013年頃にデータサイエンスがバズワードとなり機械学習する上でR言語と次点でPythonという感じだったと思う。
そして昨今はPython一色になってきている。
私としては何故このように科学計算分野のライブラリが作成され強化されるように至ったのかを知りたくなり歴史から調べてみました。
RubyがRailsにより注目されたように、Pythonでは当初数値コンピューティング用に設計されたものではなかったがリストの概念や関数型言語の基本機能を実装したこと、
Jim Fulton氏(元ZOPE社CTO)が多次元配列・行列ライブラリ「Matrix Object in Python」を開発したことで、
早い段階(Python 1.0から1年後)で科学/エンジニアリングコミュニティに注目され「Matrix-SIG」が設立、
後の「NumPy」が紆余曲折(Numeric(1995年)とNumArray(2001)を統合)を経て2005年にリリースされた。
また幾つかの科学計算用ライブラリをパッケージ化した「SciPy」が2001年にTravis Oliphant氏らによりリリースされた。
その後はEnthought社が2001年に米国で設立され、SciPyをベースにツールやパッケージやサポートを提供、また科学技術計算向けの「SciPy Conference」と呼ばれる会議の開催を支援して行く。
Pythonが、科学技術計算で使われるようになるであろう理由のもう一つに着目した。
オープンソースプロジェクトは開発リソースが限られ、開発の中心メンバーが何らかの理由で参加しなくなった場合、一気にそのプロジェクトが衰退する場合があるが、
特に科学技術計算関係のパッケージについては民間企業が本格的にサポートとしており、オープンソースソフトウェアとして公開する体制が整っている。
民間企業の代表的なのが、Enthought社とContinuum Analytics社である。
Enthought社は科学技術計算用パッケージ群「Scipy Stack」を提供し、科学技術計算向けの「SciPy Conference」と呼ばれる会議の開催を支援している。
Continuum Analytics社はPythonディストリビューション「Anaconda」を提供し、データ分析向けの「Py Data」と呼ばれる会議の開催を支援している。
また、GoogleもPython作者のGuido van Rossum氏を2005年に雇用したり、「Google Summer of Code」というオープンソースの開発に資金を提供するプロジェクトを2005年に作成し、
機械学習ライブラリの「scikit-learn」や多変量回帰分析・時系列分析ライブラリ「statsmodels」がリリースされています。
科学技術計算分野のキーマンは、「SciPy」と「NumPy」の作者でもあるTravis Oliphant氏であろう。
http://qiita.com/yaj...5502115d7e3d06e6bbdd -
普段業務でR言語を利用するなんて日本なわけないと思ったらやっぱり日本じゃなかった
-
>>28
趣味レベルだろ -
>>22
機械学習とかはサーバサイドだろ。
サーバでPythonが動き、C/C++で書かれてコンパイルされたライブラリーを呼び出す。
サーバサイドのフレームワークはPHP/Ruby/Pythonあたり。
フロントエンドではJavascript/HTML/CSSが動き、
C#とかJava書かれたソフトも動いてるかもしれん。
今時1つの言語じゃ大したことできねーぞ。 -
日本のプログラマに多い、
SIとかでクライアントの社内システムしこしこ作ってるようなのが、
むしろプログラマーの中では底辺だからな。 -
Rかじった程度の統計の人やプログラム未経験だけどとにかくクエリは自力でかけますみたいな人たちにとっては取っつきやすいみたいですね
純粋なプログラマーにはクソ言語にしか見えない -
純粋なプログラマーって言い方が謎だが、
プログラミングそのものでお金をもらってるのと、
何か成果を出すためにプログラミングをツールとして
使ってる人ではそりゃ見方が違うだろ。 -
システム化にこそ価値が宿る
-
Python簡単で便利だしな
情報工学の基礎を学んでない人でも扱える -
じゃあなに、偉そうに書いている割に俺らと一緒でAPIをぽちぽち叩く人らなんだ
なんだそれ -
お前らプログラムやってるのか知らんがデータサイエンティストはお前らと全く違う職種だから
言語ってスレタイで自分の領域だと勘違いして入るのはクルマの免許しかないやつがバイクスレに入るようなもん -
Rの女
-
マジレスすると一番必要なのはSQLだろ笑笑
-
>>11
何パーセントとか関係ないでしょ。
CにしろJavaにしろPythonにしろ言語作ったのは数人〜数十人とか。
それを何百万人ものプログラマが使ってる。
人数の多寡ではなく影響力。
影響力ある人が数人でも始めればそれが波及する。
アメリカで機械学習をやってる人たちってのは影響を与える側。
その人たちがPythonを使い出せば、新しいアルゴリズムの
ライブラリや機械学習の教科書のコードがPythonで書かれるようになる。
やがて他国の研究者もそのライブラリを使うためにPythonに乗り換える。
日本のITエンジニアが何言語使おうと世界に影響は殆どないけどね。 -
python は perl5 の次のステップアップで覚えた言語
データ処理は出力がある程度まとまっている Rに任せてる -
クルマに例えるなら、日本でプログラマといって連想する人たちはタクシーやトラックの運転手に当たる。
で、日本に自動車メーカーがないようなもんだな。日本のIT業界を例えると。
クルマに関わる人は本来、メーカーの社員、大学の社員、レーサーとか色々いるけど、
タクシーやトラックの運転手しかないから国民は
「将来は車を扱うんだというと、トラックやタクシーの運転手しか連想できない」
あろうことか、そのトラックやタクシーの運転手たちが
「俺たちが車を一番運転してるから、車のことを一番分かってるんでい。
トヨタの開発者?俺たちより運転してないだろ」
とメーカーの社員よりえらぶってる状況。それが日本のIT業界。 -
細かなところで言語仕様がイラッとくるから好きじゃない
-
なんで電子マネーみたいに無駄にポコポコ新言語作るんだ?
-
>>52
AIやらディープラーニングやら目的が細分化して、その用途に合わせるためだったり、
プログラミングのパラダイムが変遷して、その変化に合わせたりとか、
プラットフォームの多様化して、固有のプラットフォームに特化したりとかで様々。
ただpythonは結構古い。もうすぐ30年になる。 -
Rってソフトウエアってイメージあったわ
-
いやだからさ、アセンブラレベルで最適化したCモジュールやフレームワークを提供する側の人間かと思ったら
そのへんのプログラマ同様、pipかなんかで引っ張ってきたのをしょーもないプログラミング能力でAPIをぽちぽちだろ
これでサイエンティストとか名乗られても、ただのプログラマじゃん -
うちはブルジュアだからSAS
-
>>54
Mathematicaに近いイメージか -
>>55
一行目がプログラマで、サイエンティストはエンドユーザーかと -
python自体は遅いけどnumpyのようなライブラリは早いじゃん
-
データサイエンティスト≒統計家じゃね
-
>>55
> アセンブラレベルで最適化したCモジュールやフレームワークを提供する
これはエンジニアの仕事。サイエンティストの仕事では無い。
> pipかなんかで引っ張ってきたのをしょーもないプログラミング能力でAPIをぽちぽちだろ
サイエンティストはプログラミング能力で評価されるわけでは無い。
データサイエンティストならデータから有用な結果を引き出せるかどうかが評価のポイントだろ。 -
ややこしいのは、新しい機械学習のアルゴリズムを作る
例えばヒントンのような人はコンピュータサイエンティストの
くくりの方が適切(多分)ってこと。
そういう意味でデータサイエンティストよりデータアナリストとか
統計技術者という言い方の方が適切なのかもしれない。 -
データサイエンティストとデータアナリストは別な
データアナリストはExcelでグラフ作ってプレゼンしたりする奴ら
データサイエンティストはRやPythonで予測モデルを作る奴ら -
データサイエンティストはエクセルも作るし、プレゼンもするぞ。モデルも作る
てか、エクセル作るためにモデル必要だし
エクセル作るだけの仕事なんてまずないだろ。それじゃただのコンサルじゃないの?
クライアントに寄り添ってデータ分析するのがデータサイエンティスト
彼らの実装をよりエレガントにエフェクティブにするのが機械学習エンジニア
その実装や必要なデータ整備を分散化、自動化するのがデータ基盤エンジニア
実際ははっきりとは分かれず
兼務してることが大半だと思う
特にデータサイエンティストと機械学習エンジニア -
データアナリスト = データを分析して傾向を割り出す
データサイエンティスト = データを分析して予測を立てる
機械学習エンジニア = 鑑別器の正解率を高めるように特徴量を際立たせる
こんな感じか? -
ヘボい
こんなんで年収がいいんだ、おれもデーターサイエンティスト()目指そうかな -
>>66
学位あって英語できりゃ年収2000万ねらえるよ。頑張って。 -
>>14
なんか、いろいろとバカが滲み出ている発言だなw -
技術スレ特有の
上から目線のきもいヤツ湧きすぎ -
π損もやっといた方がいいかなー
色んな言語に手を出すには日本人エンジニアの余暇は少なすぎるのだけど -
>>67
人間性スキル(爆笑) -
データサイエンティスト?
また胡散臭げなコンサルがでてきたんか -
ライブラリ頼みでPython使ってるだけでデータサイエンティストとかw
-
>>67
そんなことを言ってるから日本一人負けなんだよ -
真のデータサイエンティストならば断定口調で語る可能性は優位にあるとは言えない
-
言語、言語言ってる連中は間違いなく素人。
プロのこだわりはドメイン設計とメッセージングとデザインパターン
これに尽きる。 -
>>18
実務経験ないんだろうけど。
海外じゃ理系だの文系だのといった馬鹿な区分けはないんだよ。
PythonもだけどR使ったことない学生なんて
勉強してないって自分から言ってるようなもんだし
外資じゃ絶対雇わないよ。 -
単なる分析屋なの?
新しいアルゴリズム開発するとかじゃないのか。 -
numpy, scipy, scikit-learn
この3つの影響が大きいと思う -
今メインはMatlab+Statistical Toolboxで計算してて,たまにR使うくらいなんだけど,
Pythonに置き換えるってのはなんかメリットある?
やってるのはMCMCとかの1000行くらいから10000行くらいの計算。
Matlab使いやすいからずっと使ってるんだけど,最近Pythonをよく聞くのでちょっと気になってる。 -
論文読んでアルゴリズムを拝借するだけの
データサイエンティスト馬鹿にしてるくらいなんだから
きっと著名なアルゴリズムを生み出して
社会に貢献をしてるんだろうなあ -
>>25
言語としても優れてるよ
実装したいアルゴリズムをコンパクトに記述できる
型定義や型変換など、アルゴリズムとは関係ない余計な記述が殆どいらない
インデントで構造が明確で、閉じカッコの様な余計な行が不要
pythonだと、人間はアルゴリズムに集中できる
他の言語ではコンパイラやインタープリターを支援する為に、どれだけ余計な記述を強いられているかがわかる
コードが読みやすいので、仕様書は要らず、数カ月前に書いたコードでも動作を思い出せ、改造が楽
職業プログラマーではない、サイエンティストにとって、最適な言語だ -
>>85
そうかー,今MATLABで計算しているので,できるだけFORループを使わないように行列演算だけでなんとかならないかと苦戦してるんだけど,それもなくなるのか。
まあ,MATLABは関数の型宣言が全くいらず,いきなり行列を代入することができるのがむちゃくちゃ楽なんだけど。
でもアルゴリズムに集中できるというのはいいね。ちょっとインストールしてみようかな。 -
>>78
逆だろ
数字を読んで傾向を割り出すのはデータマイニングで、AIじゃない
また、データマイニングも、数字をそのまま入力して良い結果が得られるケースは殆ど無く、人間が数字を読んで前加工して、適切なマイニングツールを選ばなきゃならない
それがデータサイエンティスト
データサイエンティストが組んだ前処理とマイニングツールの組み合わせを使って、新たなデータから傾向を見出して、何かのアクションを自動化するのがAI -
>>86
for loop使わずに行列計算したほうが早いのはpythonも同じ。
裏でどういう処理してるか考えれば分かると思うが。
pythonのnumpyっていう実質的な標準ライブラリを入れると、
MatlabやRと同じ行列演算ができるようになる。
matlab、R、python一通り使ってきたけど、
計算するだけならmatlabが一番楽だね。
環境が製品として閉じてるから。
pythonはプログラミングより環境構築が難しい。 -
>>83
別にMatlabで何の問題なくできてるなら、問題はない。
Pythonが好まれてるのはオープンだから。
Matlabは商用ソフトなんで誰でも使えるわけじゃない。
あなたが書いたコードを共有するときに問題になる。
新しいアルゴリズムがデファクトで、
pythonで実装されるようになりつつあるから、
次第にpythonを使わざるをえなくなる機会は増えていく -
全部VBでできるだろ
VB.NETを使えっての
てか、データサイエンティストって何なんだよ -
dplyrが出てからpythonでなくてもRは前処理楽になったよ。
Rとpython両方できてないと他人のコード読めないので、片方だけという
人は少ない -
では、>>90は我々低レベルプログラミング勢が貰い受ける
まずIntelの仕様書を渡すところから始める -
>>89
計算するだけならmatlabやRで良い事に同意
その計算モジュールをWebAPIやMQ等で他のモジュールと連携させたり、MongoDBやRedis等のDBを読み書きしたりと、システム化してAIにするには、pythonの方が便利
要は、バッチでデータ処理してた時代から、クラウドでAIする時代に変わり、pythonがトップになったんだと思う -
ExcelとRで回帰分析しかできないようなのはなんちゃってデータサイエンティスト。
それでもデータで経営層を動かせるからプログラマーより評価されるだけ。 -
なんだよ
回帰分析って
そんなの知らねーよ -
>>95
違う。ExcelとRで経営層を動かせるほどの結果が出せる奴がすごい。
あくまでも統計的手法は道具であり,よい道具を使ったらよい結果が出るわけではない。
すごいデータサイエンティストは,道具がすごいのではなく,データを見抜く力がすごい。
思ってもみなかったものに,ものすごく単純な統計的手法を適用して,びっくりする結果を出す。
これがほんとのデータサイエンティスト。 -
ゲロおそパイソン
-
データオナニスト職にはどんな言語が求められるの?
↑今すぐ読める無料コミック大量配信中!↑